
Name:___________________________________ NetID:______________🌵🌵

CSCI-UA.0002-008 – Midterm Exam #2

November 16th, 2016

Instructor: Joseph Versoza

Ask the person to your left for their first name
(leave blank if next to empty seat or wall):

Ask the person to your right for their first name
(leave blank if next to empty seat or wall):

____________________ ____________________

Keep this test booklet closed until the class is prompted to begin the exam

• Computers, calculators, phones, textbooks, and notebooks are not allowed during the exam
• Please turn off your phone to avoid disrupting others during the exam
• The back of this cover sheet can be used as scratch paper

 1. Read the code sample in the first column. Answer the question in the second column. (15 points)

Code Question

def double_it(s):

 print('A')
 print('B')

 if(len(s) > 0):
 return s * 3

 print('C')

print(double_it('cactus'))

 (4 points)

a) What is the output (shown on screen) of this code?

A
B
cactuscactuscactus

b) Explain why.

return stops execution of function

noise = 'DRZZZT'

def make_electronic_music(sound):
 noise = 'BLEEP'
 s = '{} BLOP {}'
 print(s.format(noise, sound))

result =
make_electronic_music('BLOOOP')
print(result)
print(noise)

What is the output (shown on screen) of this code? (4 points)

BLEEP BLOP BLOOOP
None
DRZZZT

def find(needle, haystack):
 for item in haystack:
 if item == needle:
 return True
 else:
 return False

print(find(4, [4, 3, 2, 1]))

(2 points)

a) How many times will the body of the for loop in the
 function run?

 once

b) There 's a logical error in this program; it's supposed to return
 True if the needle exists (can be found) in the list, haystack... or
 False otherwise.

 What pair of arguments should return True based on the
 description above, but return False instead because of a logical
 error.

4, [3, 4, 2, 1]

words = ["baz", "qux"]
results = words.append("corge")
print(words) # a -->
print(results) # b -->

more_words = ["foo", "bar"]
more_results = more_words.pop()
print(more_words) # c -->
print(more_results) # d -->

stuff = ["blub", "blah", "bbbb"]
print(stuff.index("blah")) # e -->

What is the output (shown on screen) of this code? (5 points)

a) ['baz', 'qux', 'corge']
b) None
c) ['foo']
d) bar
e) 1

 2. Using the following variable declaration, write out the output (error is possible) of the print statements below. (5 points)

animals = [['dog', 'cat', 'ant'], ['bat'], ['goat'], ['cow', 'bee']]

 a) print(animals[-3]) (a) ['bat']

 b) print(animals[4]) (b) error

 c) print(animals[1] * 2) (d) ['bat', 'bat']

 d) print(animals[0][1:100]) (e) ['cat', 'ant']

 e) print("animals"[3]) (f) m

 3. True or False (5 points)

 a) (True / False) [2, 5, 6, 1] > [2, 5, 3, 1]

 b) (True / False) squashed = [1, 2] + [3, 4]
 print(squashed == [[1, 2], [3, 4]])

 c) (True / False) 'foo' in ['baz', 'bar', 'foo']

 d) (True / False) Both strings and lists support the repetition operator (multiplication).

 e) (True / False) Local variables can be accessed outside of the function that they are defined in.

 4. The intention of the following code is to create a function that would take a non-empty list of ints (positive, negative, and
mixed positive and negative ints), and return the largest int in that list. For example, given [1, 2, 3], the function would
return 3. Unfortunately, the implementation is slightly off! Test the program below. (4 points)

def max_int(numbers):
 largest_number = 0
 for n in numbers:
 if n > largest_number:
 largest_number = n
 return largest_number

Write assertions that will cover three unique test cases. There is a logical error in the program; find the error based on the
implementation and description. Make your last assertion the one that uncovers the logical error.

 a) assert 9 == max_int([1, 5, 9]), 'only positive numbers'

 b) assert 1 == max_int([1, -5, -9]), 'mixed positive and negative'

 c) assert -1 == max_int([-1, -5, -9]), 'negative numbers only'

(This assertion should uncover a logical error)

 5. What is the output of the following program? Use the grid to the right of the program as a guide; each individual character of
output can be placed in a single box (an empty box implies a space). You do not have to use all of the boxes. (4 points)

def make_pattern(rows):
 for row_num in range(rows):
 row = ''
 for col_num in range(rows):
 if col_num == 0 or col_num == row_num:
 row += str(col_num)
 else:
 row += ' ' #space character
 print(row)

make_pattern(5)

0

0 1

0 2

0 3

4 4

 6. You're tired of inadvertently writing Python variable names that aren't valid, so you decide to write a program that checks the
validity of variable names. To write this program, you'll create a function called is_valid_name. Your program will then
continually ask the user for a variable name... and you'll use your function to determine whether or not it's valid. If the user enters
an invalid variable name 3 times in a row or if they enter a valid name, stop asking for a variable name! (12 points)

 a) Create a function called is_valid_name
• parameters: a string representing a variable name
• processing: use the rules below to determine whether or not the variable is valid
• return: either true or false depending on whether or not the variable name is valid

 b) A valid variable name:
• starts with only an underscore or a letter
• is only composed of underscores, letters or numbers

 c) Continually ask the user for a variable names
 d) Use your function to check if it's valid
 e) If the user enters a valid name... or if they enter 3 invalid names, stop asking

Example usage:

print(is_valid_name('1asdf')) # False
print(is_valid_name('#foo')) # False
print(is_valid_name('asdf1')) # True
print(is_valid_name('_foo')) # True
print(is_valid_name('f_oo')) # True

Example Interaction:

Variable name plz
> $hello
Variable name plz
> hello

def is_valid_name(s):
 for c in s:
 if not c.isalnum() and c != '_':
 return False
 if s[0].isnumeric():
 return False
 return True

count = 0
while count < 3:
 if is_valid_name(input('Variable name plz\n> ')):
 break
 else:
 count += 1

 7. Write a program that asks the user for 2 numbers... and then prints out the factors of all of the numbers between and including the
2 numbers entered. (10 points)
 a) ask for a start number and an end number
 b) only proceed to print out factors when: 1) the end number is at least equal to the start number, 2) both are greater than zero
 c) determine the factors for every number starting from the start number and ending at the end number (inclusive)
 d) print out the factors for a number in the following format:

The factors of <number> are: <factor 1> <factor 2> … <factor n>
• the number and its factors should all be on the same line
• list the factors in descending order
• separate each factor with a
•

 e) (hint) a factor is a number that divides evenly into another number – for example, the factors of 4 are 4, 2, and 1
 f) (hint) one way to calculate all possible factors is to try every potential number that could possibly “fit” into the number

Start number
>60
End number
>64
The factors of 60 are: 60 30 20 15 12 10 6 5 4 3 2 1
The factors of 61 are: 61 1
The factors of 62 are: 62 31 2 1
The factors of 63 are: 63 21 9 7 3 1
The factors of 64 are: 64 32 16 8 4 2 1

start = int(input('Start number\n>'))
end = int(input('End number\n>'))
if start > 0 and end >= start:
 for i in range(start, end + 1):
 print('The factors of', i, 'are: ', end='')
 for j in range(i, 0, -1):
 if i % j == 0:
 print('{} '.format(j), end='')
 print()

 8. You're a publisher of Star Trek fan fiction. Printed fan fiction doesn't sell in high numbers, so you decide to find creative ways to
save money. One solution that you've come up with is to reduce the number of pages of each story by removing every vowel
(regardless of case) in the works that you publish (it's totally still understandable without vowels, right?). So... you write a program
to do it for you. (8 points total)

Create a function called remove_vowels.

 a) It should take two arguments, the string that will have vowels removed from it, and an additional boolean value that
determines whether or not the letter y should be considered a vowel

 b) It will give back a new string with all vowels removed
 c) If the second argument is True, it will count y as a vowel, and remove it from the incoming string.

Example output:

>>> print(remove_vowels('Typical Picard', True))
Tpcl Pcrd
>>> print(remove_vowels('Typical Picard', False))
Typcl Pcrd

def remove_vowels(s, include_y):

new_s = ''
vowels = 'aeiouAEIOU'
if include_y:
 vowels = vowels + 'yY'
for c in s:
 if c not in vowels:
 new_s += c

 return new_s

 9. Create a function called remove_last. It should take two arguments: (8 points)

 a) a string that specifies what character will separate words (for example, a dash: '-')
 b) another string composed of words separated by the character specified (for example: 'word1-word2-word3')
 c) it will give back everything but the last word, in all uppercase (in the example above, 'WORD1-WORD2')
 d) if the separator doesn't occur in the string (including an empty string), then the original string is returned in uppercase
 e) Example usage:

print(remove_last('-', 'hi-how-are-you')) # prints out – HI-HOW-ARE
print(remove_last('X', 'whyXsleep')) # prints out – WHY
print(remove_last('-', 'hello')) # prints out - HELLO
print(remove_last('-', '')) # does not print out anything

def remove_last(sep, s)
 count = 0
 i = len(s)
 for letter in s:
 if letter == sep:
 i = count
 count += 1
 return s[:i].upper()

 10. Write a function called too_much_filler. (6 points)

 a) It should have 3 parameters: a list of strings called words, a string called filler, and a number called limit.
 b) It should return a boolean value. If the number of times the string, filler, occurs in the list, words, is greater than the

limit, give back True. Otherwise, give back False.
 c) Example usage:

>>> print(too_much_filler(['you', 'know', 'like', 'words', 'and','stuff'], 'like', 2)
False
>>> print(too_much_filler(['um', 'try', 'um', 'not', 'saying', 'um'], 'um', 2))
True

def too_much_filler(words, filler, limit):
 return words.count(filler) > limit

Name:___________________________________ NetID:______________

Scratch Paper and Reference Material

ASCII Chart String Methods List Methods
 Char Dec | Char Dec | Char Dec | Char Dec

 (nul) 0 | (sp) 32 | @ 64 | ` 96
 (soh) 1 | ! 33 | A 65 | a 97
 (stx) 2 | " 34 | B 66 | b 98
 (etx) 3 | # 35 | C 67 | c 99
 (eot) 4 | $ 36 | D 68 | d 100
 (enq) 5 | % 37 | E 69 | e 101
 (ack) 6 | & 38 | F 70 | f 102
 (bel) 7 | ' 39 | G 71 | g 103
 (bs) 8 | (40 | H 72 | h 104
 (ht) 9 |) 41 | I 73 | i 105
 (nl) 10 | * 42 | J 74 | j 106
 (vt) 11 | + 43 | K 75 | k 107
 (np) 12 | , 44 | L 76 | l 108
 (cr) 13 | - 45 | M 77 | m 109
 (so) 14 | . 46 | N 78 | n 110
 (si) 15 | / 47 | O 79 | o 111
 (dle) 16 | 0 48 | P 80 | p 112
 (dc1) 17 | 1 49 | Q 81 | q 113
 (dc2) 18 | 2 50 | R 82 | r 114
 (dc3) 19 | 3 51 | S 83 | s 115
 (dc4) 20 | 4 52 | T 84 | t 116
 (nak) 21 | 5 53 | U 85 | u 117
 (syn) 22 | 6 54 | V 86 | v 118
 (etb) 23 | 7 55 | W 87 | w 119
 (can) 24 | 8 56 | X 88 | x 120
 (em) 25 | 9 57 | Y 89 | y 121
 (sub) 26 | : 58 | Z 90 | z 122
 (esc) 27 | ; 59 | [91 | { 123
 (fs) 28 | < 60 | \ 92 | | 124
 (gs) 29 | = 61 |] 93 | } 125
 (rs) 30 | > 62 | ^ 94 | ~ 126
 (us) 31 | ? 63 | _ 95 | (del)127

capitalize
count
endswith
find
format
index
isalnum
isalpha
isdecimal
isdigit
islower
isnumeric
isprintable
isspace
istitle
isupper
join
lower
replace
split
startswith
strip
title
upper

append
count
extend
index
insert
pop
remove
reverse
sort

